Xác định nguyên hàm bằng cách sử dụng dạng nguyên hàm cơ bản: Dạng 1

Tăng Giáp

Administrator
Thành viên BQT
Dạng 1: Tìm nguyên hàm $I = \int {\frac{{dx}}{{\sin \left( {x + a} \right)\sin \left( {x + b} \right)}}} .$
Cách giải
: Ta thực hiện theo các bước sau:
+ Bước 1: Sử dụng đồng nhất thức: $1 = \frac{{\sin \left( {a – b} \right)}}{{\sin \left( {a – b} \right)}}$ $ = \frac{{\sin \left[ {\left( {x + a} \right) – \left( {x + b} \right)} \right]}}{{\sin \left( {a – b} \right)}}.$
+ Bước 2: Biến đổi: $I = \int {\frac{{dx}}{{\sin \left( {x + a} \right)\sin \left( {x + b} \right)}}} $ $ = \frac{1}{{\sin \left( {a – b} \right)}}\int {\frac{{\sin \left[ {\left( {x + a} \right) – \left( {x + b} \right)} \right]}}{{\sin \left( {x + a} \right)\sin \left( {x + b} \right)}}dx} $ $ = \frac{1}{{\sin \left( {a – b} \right)}}\int {\frac{{\sin \left( {x + a} \right)\cos \left( {x + b} \right) – \cos \left( {x + a} \right)\sin \left( {x + b} \right)}}{{\sin \left( {x + a} \right)\sin \left( {x + b} \right)}}dx} $ $ = \frac{1}{{\sin \left( {a – b} \right)}}\left[ {\int {\frac{{\cos \left( {x + b} \right)}}{{\sin \left( {x + b} \right)}}dx} – \int {\frac{{\cos \left( {x + a} \right)}}{{\sin \left( {x + a} \right)}}dx} } \right]$ $ = \frac{1}{{\sin \left( {a – b} \right)}}\left[ {\ln \left| {\sin \left( {x + b} \right)} \right| – \ln \left| {\sin \left( {x + a} \right)} \right|} \right] + C$ $ = \frac{1}{{\sin \left( {a – b} \right)}}\ln \left| {\frac{{\sin \left( {x + b} \right)}}{{\sin \left( {x + a} \right)}}} \right| + C.$


Chú ý: Phương pháp trên cũng được được áp dụng cho các dạng nguyên hàm sau:
+ Nguyên hàm $I = \int {\frac{{dx}}{{\cos \left( {x + a} \right)\cos \left( {x + b} \right)}}} $ bằng cách sử dụng đồng nhất thức $1 = \frac{{\sin \left( {a – b} \right)}}{{\sin \left( {a – b} \right)}}$ $ = \frac{{\sin \left[ {\left( {x + a} \right) – \left( {x + b} \right)} \right]}}{{\sin \left( {a – b} \right)}}.$
+ Nguyên hàm $I = \int {\frac{{dx}}{{\sin \left( {x + a} \right)\cos \left( {x + b} \right)}}} $ bằng cách sử dụng đồng nhất thức $1 = \frac{{\cos \left( {a – b} \right)}}{{\cos \left( {a – b} \right)}}$ $ = \frac{{\cos \left[ {\left( {x + a} \right) – \left( {x + b} \right)} \right]}}{{\cos \left( {a – b} \right)}}.$

Ví dụ 1: Tìm họ nguyên hàm của hàm số: $f\left( x \right) = \frac{1}{{\sin x.\cos \left( {x + \frac{\pi }{4}} \right)}}.$

Cách 1: Sử dụng đồng nhất thức: $1 = \frac{{\cos \frac{\pi }{4}}}{{\cos \frac{\pi }{4}}}$ $ = \frac{{\cos \left[ {\left( {x + \frac{\pi }{4}} \right) – x} \right]}}{{\frac{{\sqrt 2 }}{2}}}$ $ = \sqrt 2 \cos \left[ {\left( {x + \frac{\pi }{4}} \right) – x} \right].$
Ta được: $F\left( x \right) = \sqrt 2 \int {\frac{{\cos \left[ {\left( {x + \frac{\pi }{4}} \right) – x} \right]}}{{\sin x.\cos \left( {x + \frac{\pi }{4}} \right)}}} $ $ = \sqrt 2 \int {\frac{{\cos \left( {x + \frac{\pi }{4}} \right)\cos x + \sin \left( {x + \frac{\pi }{4}} \right)\sin x}}{{\sin x.\cos \left( {x + \frac{\pi }{4}} \right)}}dx} $ $ = \sqrt 2 \left[ {\int {\frac{{\cos x}}{{\sin x}}dx} + \int {\frac{{\sin \left( {x + \frac{\pi }{4}} \right)}}{{\cos \left( {x + \frac{\pi }{4}} \right)}}dx} } \right]$ $ = \sqrt 2 \left[ {\ln \left| {\sin x} \right| – \ln \left| {\cos \left( {x + \frac{\pi }{4}} \right)} \right|} \right] + C.$
Cách 2: Ta có:
$F\left( x \right) = \sqrt 2 \int {\frac{{dx}}{{\sin x\left( {\cos x – \sin x} \right)}}} $ $ = \sqrt 2 \int {\frac{{dx}}{{{{\sin }^2}x\left( {\cot x – 1} \right)}}} $ $ = – \sqrt 2 \int {\frac{{d\left( {\cot x} \right)}}{{\cot x – 1}}} $ $ = – \sqrt 2 \int {\frac{{d\left( {\cot x – 1} \right)}}{{\cot x – 1}}} $ $ = – \sqrt 2 \ln \left| {\cot x – 1} \right| + C.$
 
Back
Top