Phương pháp tính góc giữa hai mặt phẳng cắt nhau

Tăng Giáp

Administrator
Thành viên BQT
Bài toán: Cho hai mặt phẳng $(α)$ và $(β)$ cắt nhau, tính góc giữa hai mặt phẳng $(α)$ và $(β).$


Ta áp dụng một trong các phương pháp sau đây:

Phương pháp 1
Dựng hai đường thẳng $a$, $b$ lần lượt vuông góc với hai mặt phẳng $\left( \alpha \right)$ và $\left( \beta \right)$. Khi đó, góc giữa hai mặt phẳng $\left( \alpha \right)$ và $\left( \beta \right)$ là $\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \left( {\widehat {a,b}} \right).$ Tính góc $\left( {\widehat {a,b}} \right).$

Phương pháp 2
+ Xác định giao tuyến $c$ của hai mặt phẳng $\left( \alpha \right)$ và $\left( \beta \right).$
+ Dựng hai đường thẳng $a$, $b$ lần lượt nằm trong hai mặt phẳng và cùng vuông góc với giao tuyến $c$ tại một điểm trên $c.$ Khi đó: $\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \left( {\widehat {a,b}} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png


Hiểu cách khác: Ta xác định mặt phẳng phụ $\left( \gamma \right)$ vuông góc với giao tuyến $c$ mà $\left( \alpha \right) \cap \left( \gamma \right) = a$, $\left( \beta \right) \cap \left( \gamma \right) = b.$ Suy ra $\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \left( {\widehat {a,b}} \right).$

Phương pháp 3 (trường hợp đặc biệt)

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png


Nếu có một đoạn thẳng nối hai điểm $A$, $B$ $\left( {A \in \left( \alpha \right), B \in \left( \beta \right)} \right)$ mà $AB \bot \left( \beta \right)$ thì qua $A$ hoặc $B$ ta dựng đường thẳng vuông góc với giao tuyến $c$ của hai mặt phẳng tại $H.$ Khi đó $\left( {\widehat {\left( \alpha \right),\left( \beta \right)}} \right) = \widehat {AHB}.$

Ví dụ 1. Cho hình chóp tứ giác đều $S.ABCD$ cạnh đáy $ABCD$ bằng $a$ và $SA = SB = SC = SD = a.$ Tính $cosin$ góc giữa hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SAD} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png


Gọi $I$ là trung điểm $SA.$ Do tam giác $SAD$ và $SAB$ đều nên:
$\left\{ \begin{array}{l}
BI \bot SA\\
DI \bot SA
\end{array} \right.$ $ \Rightarrow \left( {\widehat {\left( {SAB} \right),\left( {SAD} \right)}} \right) = \left( {\widehat {BI,DI}} \right).$
Áp dụng định lý $cosin$ cho tam giác $BID$ ta có:
$\cos \widehat {BID} = \frac{{I{B^2} + I{D^2} – B{D^2}}}{{2IB.ID}}$ $ = \frac{{{{\left( {\frac{{\sqrt 3 }}{2}a} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}a} \right)}^2} – {{\left( {a\sqrt 2 } \right)}^2}}}{{2.\frac{{\sqrt 3 }}{2}a.\frac{{\sqrt 3 }}{2}a}}$ $ = – \frac{1}{3}.$
Vậy $\cos \left( {\widehat {\left( {SAB} \right),\left( {SAD} \right)}} \right) = \frac{1}{3}.$

Ví dụ 2. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB = 2a$, $SA$ vuông góc với $\left( {ABCD} \right)$ và $SA = a\sqrt 3 .$ Tính góc giữa hai mặt phẳng $\left( {SBC} \right)$ và $\left( {SCD} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png


Vì $ABCD$ là nửa lục giác đều nên $AD = DC = CB = a.$
Dựng đường thẳng đi qua $A$ và vuông góc với $\left( {SCD} \right).$
Trong mặt phẳng $\left( {ABCD} \right)$ dựng $AH \bot CD$ tại $H$ $ \Rightarrow CD \bot \left( {SAH} \right).$
Trong mặt phẳng $\left( {SAH} \right)$ dựng $AP \bot SH$ $ \Rightarrow CD \bot AP$ $ \Rightarrow AP \bot \left( {SCD} \right).$
Dựng đường thẳng đi qua $A$ và vuông góc với $\left( {SBC} \right).$
Trong mặt phẳng $\left( {SAC} \right)$ dựng $AQ \bot SC.$
Lại có $AQ \bot BC$ vì $\left\{ \begin{array}{l}
BC \bot AC\\
BC \bot SA
\end{array} \right.$ $ \Rightarrow BC \bot \left( {SAC} \right)$ $ \Rightarrow BC \bot AQ.$
Vậy $AQ \bot \left( {SBC} \right).$

Suy ra góc giữa hai mặt phẳng $\left( {SBC} \right)$ và $\left( {SCD} \right)$ là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng ấy là $AP$ và $AQ.$
Ta tính góc $\widehat {PAQ}$, có $AH = \sqrt {A{D^2} – H{D^2}} $ $ = \sqrt {{a^2} – \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}.$
$ \Rightarrow \frac{1}{{A{P^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{H^2}}}$ $ \Rightarrow AP = \frac{{a\sqrt 3 }}{{\sqrt 5 }}.$
Tam giác $SAC$ vuông cân tại $A$ $ \Rightarrow AQ = \frac{{SC}}{2} = \frac{{a\sqrt 6 }}{2}.$
$\Delta APQ$ vuông tại $P$ $ \Rightarrow \cos \widehat {PAQ} = \frac{{AP}}{{AQ}} = \frac{{\sqrt {10} }}{5}$ $ \Rightarrow \widehat {PAQ}$ $ = \arccos \frac{{\sqrt {10} }}{5}.$

Ví dụ 3. Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân với $BA = BC = a$, $SA \bot \left( {ABC} \right)$, $SA = a.$ Gọi $E, F$ lần lượt là trung điểm của các cạnh $AB, AC.$ Tính $cosin$ góc giữa hai mặt phẳng $\left( {SEF} \right)$ và $\left( {SBC} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png

Nhận xét: Giao tuyến của hai mặt phẳng $\left( {SEF} \right)$ và $\left( {SBC} \right)$ là đường thẳng $St$ đi qua $S$ và song song với $EF$ và $BC$ nên ta xác định hai đường thẳng qua $S$ và lần lượt nằm trong hai mặt phẳng $\left( {SEF} \right)$ và $\left( {SBC} \right)$ và cùng vuông góc với $St$ (ta đi chứng minh hai đường thẳng đó là $SE$ và $SB$).

Vì $\left\{ \begin{array}{l}
EF \subset \left( {SEF} \right)\\
BC \subset \left( {SBC} \right)\\
EF {\rm{//}} BC
\end{array} \right. $ $⇒$ giao tuyến của $\left( {SEF} \right)$ và $\left( {SBC} \right)$ là đường thẳng qua $S$, song song với $BC$, là $St.$

Ta có $\left\{ \begin{array}{l}
BC \bot AB\\
BC \bot SA\left( {vì SA \bot \left( {ABC} \right)} \right)
\end{array} \right. $ $ \Rightarrow BC \bot \left( {SAB} \right)$ $ \Rightarrow BC \bot SB$ hay $St \bot SB.$
Tương tự $EF \bot \left( {SAE} \right)$ $ \Rightarrow EF \bot SE$ mà $EF {\rm{//}} St$ $ \Rightarrow St \bot SE.$
Vậy $SB$ và $SE$ cùng đi qua $S$ và cùng vuông góc với $St$ nên góc giữa hai mặt phẳng $\left( {SEF} \right)$ và $\left( {SBC} \right)$ bằng góc giữa hai đường thẳng $SB$ và $SE.$
Ta tính góc $\widehat {BSE}.$
Có $SE = \sqrt {S{A^2} + A{E^2}} = \frac{{a\sqrt 5 }}{2}$; $SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 2 $; $BE = \frac{a}{2}.$
Theo định lí $cosin$ ta có: $\cos \widehat {BSE} = \frac{{S{E^2} + S{B^2} – B{E^2}}}{{2.SE.SB}}$ $ = \frac{3}{{\sqrt {10} }}$ $ \Rightarrow \widehat {BSE} = \arccos \frac{3}{{\sqrt {10} }}.$

Ví dụ 4. Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân tại $B$, $SA = a$ và $SA \bot \left( {ABC} \right)$, $AB = BC = a.$ Tính góc giữa hai mặt phẳng $\left( {SAC} \right)$ và $\left( {SBC} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png

Nhận xét: Ta áp dụng phương pháp 3 (trường hợp đặc biệt).

Ta có $\left( {SAC} \right) \cap \left( {SBC} \right) = SC.$
Gọi $F$ là trung điểm $AC$ $ \Rightarrow BF \bot \left( {SAC} \right).$
Dựng $BK \bot SC$ tại $K$ $ \Rightarrow SC \bot \left( {BKF} \right)$ $ \Rightarrow \widehat {\left( {\left( {SAC} \right),\left( {SBC} \right)} \right)}$ $ = \widehat {\left( {KB,KF} \right)} = \widehat {BKF}.$
$\Delta CFK \sim \Delta CSA \Rightarrow \frac{{FK}}{{FC}} = \frac{{SA}}{{SC}}$ $ \Rightarrow FK = \frac{{FC.SA}}{{SC}}$ $ = \frac{{\frac{{a\sqrt 2 }}{2}.a}}{{a\sqrt 3 }} = \frac{a}{{\sqrt 6 }}.$
$\Delta BFK$ vuông tại $F$ $ \Rightarrow \tan \widehat {BKF} = \frac{{FB}}{{FK}}$ $ = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{a}{{\sqrt 6 }}}} = \sqrt 3 $ $ \Rightarrow \widehat {BKF} = 60^\circ $ $ = \widehat {\left( {\left( {SAC} \right),\left( {SBC} \right)} \right)}.$

Ví dụ 5. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB = 2a$, $SA$ vuông góc với $\left( {ABCD} \right)$ và $SA = a\sqrt 3 .$ Tính $tan$ của góc giữa hai mặt phẳng $\left( {SAD} \right)$ và $\left( {SBC} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png

Gọi $I = AD \cap BC$, $ABCD$ là nửa lục giác đều nên $AD = DC = CB = a$, $AI = IB = a.$
$\left( {SAD} \right) \cap \left( {SBC} \right) = SI$ $ \Rightarrow \left\{ \begin{array}{l}
BD \bot SA\\
BD \bot AD
\end{array} \right.$ $ \Rightarrow BD \bot \left( {SAD} \right) \Rightarrow BD \bot SI.$
Vì vậy theo trường hợp đặc biệt ta chỉ cần dựng $DE \bot SI$ với $E \in SI.$
Khi đó, $SI \bot \left( {BED} \right)$ $ \Rightarrow \left( {\widehat {\left( {SAD} \right),\left( {SSBC} \right)}} \right) = \left( {\widehat {EB,ED}} \right)$ $ = \widehat {BED}$ (Vì $\Delta BED$ vuông tại $D$).
$\Delta AIB$ đều nên $BD = a\sqrt 3 .$
$SI = \sqrt {S{A^2} + A{I^2}} = a\sqrt 7 .$
Hai tam giác vuông $SAI$ và $DEI$ đồng dạng nên: $\frac{{DE}}{{SA}} = \frac{{DI}}{{SI}} \Rightarrow DE = \frac{{a\sqrt 3 }}{{\sqrt 7 }}.$
$\Delta BDE$ vuông tại $D$ $ \Rightarrow \tan \widehat {BED} = \frac{{BD}}{{DE}} = \sqrt 7 .$

Ví dụ 6. Cho tam giác $ABC$ vuông cân tại $A$ có $AB = a$, trên đường thẳng $d$ vuông góc với $\left( {ABC} \right)$ tại điểm $A$ ta lấy một điểm $D.$ Tính góc giữa hai mặt phẳng $\left( {ABC} \right)$ và $\left( {DBC} \right)$, trong trường hợp $\left( {DBC} \right)$ là tam giác đều.

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png

Gọi $\varphi $ là góc giữa hai mặt phẳng $\left( {ABC} \right)$ và $\left( {DBC} \right).$
Theo công thức diện tích hình chiếu của đa giác, ta có: ${S_{\Delta ABC}} = {S_{\Delta DBC}}.cos\varphi .$
Mà: ${S_{ΔDBC}} = \frac{1}{2}DB.DC.\sin {60^0}$ $ = \frac{1}{2}a\sqrt 2 .a\sqrt 2 .\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{2}.$
Mặt khác: ${S_{ΔABC}} = \frac{1}{2}AB.AC = \frac{1}{2}{a^2}.$
$ \Rightarrow \cos \varphi = \frac{{{S_{ΔABC}}}}{{{S_{ΔDBC}}}} = \frac{{\sqrt 3 }}{3}$ $ \Rightarrow \varphi = \arccos \frac{{\sqrt 3 }}{3}.$

Ví dụ 7. Cho lăng trụ đứng $OAB.O’A’B’$ có các đáy là các tam giác vuông cân $OA = OB = a, AA’ = a\sqrt 2 .$ Gọi $M, P$ lần lượt là trung điểm các cạnh $OA, AA’.$ Tính diện tích thiết diện khi cắt lăng trụ bởi $\left( {B’MP} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png

Gọi $R$ là giao điểm của $MP$ và $OO’$, $Q$ là giao điểm của $B’R$ với $OB.$
Thiết diện là tứ giác $MPB’Q$, ta có: $\frac{{OQ}}{{O’B’}} = \frac{{RO}}{{RO’}} = \frac{1}{3}$ $ \Rightarrow OQ = \frac{a}{3}.$
Tứ giác $AMQB$ là hình chiếu vuông góc của tứ giác $PMQB’$ trên mặt phẳng $\left( {OAB} \right)$ nên: ${S_{PMQB’}} = \frac{{{S_{AMQB}}}}{{\cos \varphi }}.$
Với $\varphi $ là góc tạo bởi hai mặt phẳng $\left( {OAB} \right)$ và $\left( {MPB’Q} \right).$
Ta có: ${S_{AMQB}} = {S_{OAB}} – {S_{OMQ}}$ $ = \frac{1}{2}{a^2} – \frac{1}{{12}}{a^2} = \frac{5}{{12}}{a^2}.$
Hạ $OH \bot MQ$, ta có: $\left\{ \begin{array}{l}
MQ \bot OH\\
MQ \bot OR
\end{array} \right. \Rightarrow MQ \bot \left( {OHR} \right).$
Vậy: $\varphi = \widehat {OHR}$ ($\widehat {OHR}$ nhọn).
Ta có: $\cos \varphi = cos\widehat {OHR} = \frac{{OH}}{{RH}}$ $ = \frac{{OH}}{{\sqrt {O{H^2} + O{R^2}} }}$ $ = \frac{{\frac{a}{{\sqrt {13} }}}}{{\sqrt {\frac{{{a^2}}}{{13}} + \frac{{{a^2}}}{2}} }} = \frac{{\sqrt 2 }}{{\sqrt {15} }}.$
Vậy: ${S_{PMQB’}} = \frac{{5{a^2}\sqrt {15} }}{{12\sqrt 2 }}.$

Ví dụ 8. Cho lăng trụ đứng $ABC.A’B’C’$ có đáy $ABC$ là một tam giác cân với $AB = AC = a,\widehat {BAC} = {120^0},$ cạnh bên $BB’ = a.$ Gọi $I$ là trung điểm $CC’.$ Chứng minh rằng tam giác $AB’I$ vuông ở $A$. Tính $cosin$ của góc giữa hai mặt phẳng $\left( {ABC} \right)$ và $\left( {AB’I} \right).$

Phương pháp tính góc giữa hai mặt phẳng cắt nhau.png

Áp dụng định lý $cosin$ cho $\Delta ABC$ ta có: $B{C^2} = {a^2} + {a^2} – 2{a^2}{\rm{cos}}{120^0}$ $ = 3{a^2}.$
Áp dụng định lý Py-ta-go cho các tam giác:
$\Delta B’BA$: $B'{A^2} = 2{a^2}.$
$\Delta ICA$: $A{I^2} = {a^2} + {\left( {\frac{1}{2}} \right)^2} = \frac{{5{a^2}}}{4}.$
$\Delta B’C’I$: $B'{I^2} = 3{a^2} + \frac{{{a^2}}}{4} = \frac{{13{a^2}}}{4}.$
Ta có: $B'{A^2} + A{I^2} = 2{a^2} + \frac{{5{a^2}}}{4}$ $ = \frac{{13{a^2}}}{4} = B'{I^2} \Rightarrow \Delta AB’I$ vuông ở $A.$
Ta có: ${S_{\Delta AB’I}} = \frac{1}{2}AI.AB’$ $ = \frac{1}{2}.\frac{{a\sqrt 5 }}{2}.a\sqrt 2 = \frac{{{a^2}\sqrt {10} }}{4}.$
${S_{\Delta ABC}} = \frac{1}{2}{a^2}\sin {120^0} = \frac{{{a^2}\sqrt 3 }}{4}.$
Gọi $\varphi $ là góc giữa hai mặt phẳng $\left( {ABC} \right)$ và $\left( {AB’I} \right).$ Khi đó:
$cos\varphi = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABI’}}}}$ $ = \frac{{\frac{{{a^2}\sqrt 3 }}{4}}}{{\frac{{{a^2}\sqrt {10} }}{4}}} = \frac{{\sqrt 3 }}{{\sqrt {10} }} = \frac{{\sqrt {30} }}{{10}}.$
 
Chỉnh sửa cuối:
Back
Top