Khoảng cách giữa hai đường thẳng chéo nhau: Phương pháp 1

Tăng Giáp

Administrator
Thành viên BQT
Phương pháp 1: Chọn mặt phẳng $(α)$ chứa đường thẳng $Δ$ và song song với $Δ’$. Khi đó $d(\Delta ,\Delta’) = d(\Delta’,(\alpha ))$.

Khoảng cách giữa hai đường thẳng chéo nhau.png


Ví dụ 1: Cho hình chóp $S.ABCD$ có $SA \bot \left( {ABCD} \right)$, đáy $ABCD$ là hình chữ nhật với $AC = a\sqrt 5 $ và $BC = a\sqrt 2$. Tính khoảng cách giữa $SD$ và $BC.$

Khoảng cách giữa hai đường thẳng chéo nhau.png


Ta có $BC // (SAD).$
Suy ra $d\left( {BC;SD} \right) = d\left( {BC;\left( {SAD} \right)} \right)$ $ = d\left( {B;\left( {SAD} \right)} \right).$
Mà $\left\{ \begin{array}{l}
AB \bot AD\\
AB \bot SA
\end{array} \right. \Rightarrow AB \bot \left( {SAD} \right)$ $ \Rightarrow d\left( {B;\left( {SAD} \right)} \right) = AB.$
Ta có $AB = \sqrt {A{C^2} – B{C^2}} $ $ = \sqrt {5{a^2} – 2{a^2}} = \sqrt 3 a.$

Ví dụ 2: Cho hình lăng trụ đứng $ABC.A’B’C’$ có đáy là tam giác vuông tại $B$, $AB = BC = a$, cạnh bên ${\rm{AA}}’ = \sqrt 2.$ Gọi $M$ là trung điểm của $BC$. Tính $d\left( {AM;B’C} \right)$.

Khoảng cách giữa hai đường thẳng chéo nhau.png


Trước hết ta đi dựng $1$ mặt phẳng chứa đường này và song song với đường kia để chuyển về khoảng cách từ $1$ điểm đến mặt phẳng. Lấy $E$ là trung điểm $BB’.$
$ \Rightarrow ME//CB’ \Rightarrow CB’//(AME).$
$ \Rightarrow d(AM;B’C) = d(B’C;(AME))$ $ = d(C;(AME)) = d(B;(AME)).$
Mà tứ diện $BAME$ vuông ở $B$ nên:
$\frac{1}{{{d^2}(B;(AME))}}$ $ = \frac{1}{{B{M^2}}} + \frac{1}{{B{E^2}}} + \frac{1}{{B{A^2}}}$ $ = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} + \frac{1}{{{a^2}}}$ $ = \frac{4}{{{a^2}}} + \frac{4}{{2{a^2}}} + \frac{1}{{{a^2}}} = \frac{7}{{{a^2}}}.$
$ \Rightarrow d(B;(AME)) = \frac{a}{{\sqrt 7 }}$ $ = d(AM;B’C).$
 
Back
Top