Dấu của nhị thức bậc nhất

Tăng Giáp

Administrator
Thành viên BQT
A. KIẾN THỨC CẦN NẮM VỮNG
1. Nhị thức bậc nhất và dấu của nhị thức bậc nhất

a) Định nghĩa nhị thức bậc nhất:
• Nhị thức bậc nhất (đối với $x$) là biểu thức dạng $ax+b$, trong đó $a$ và $b$ là hai số cho trước với $a\ne 0.$
• ${{x}_{0}}=-\frac{b}{a}$ được gọi là nghiệm của nhị thức bậc nhất $f\left( x \right)=ax+b.$
b) Dấu của nhị thức bậc nhất:
• Nhị thức bậc nhất $f\left( x \right)=ax+b$ cùng dấu với hệ số $a$ khi $x$ lớn hơn nghiệm và trái dấu với hệ số $a$ khi $x$ nhỏ hơn nghiệm của nó.
• Bảng xét dấu nhị thức bậc nhất:


Dấu của nhị thức bậc nhất.png


2. Ứng dụng dấu của nhị thức bậc nhất để giải toán
a) Giải bất phương trình tích:
Các dạng toán: $P(x)>0$, $P(x)≥0$, $P(x)<0$, $P(x)≤0$ trong đó $P\left( x \right)$ là tích các nhị thức bậc nhất.
Cách giải: Lập bảng xét dấu của $P\left( x \right)$, từ đó suy ra tập nghiệm của bất phương trình.
b) Giải bất phương trình chứa ẩn ở mẫu:
Các dạng toán: $\frac{P(x)}{Q(x)}>0$, $\frac{P(x)}{Q(x)}≥0$, $\frac{P(x)}{Q(x)}<0$, $\frac{P(x)}{Q(x)}≤0$ trong đó $P\left( x \right)$, $Q\left( x \right)$ là tích những nhị thức bậc nhất.
Cách giải: Lập bảng xét dấu của $\frac{P(x)}{Q(x)}$, từ đó suy ra tập nghiệm của bất phương trình.
c) Giải bất phương trình chứa ẩn trong dấu giá trị tuyệt đối (GTTĐ):
Sử dụng định nghĩa hoặc tính chất của giá trị tuyệt đối để khử dấu giá trị tuyệt đối.
 
Back
Top