Phương pháp giải toán: Dựa vào đồ thị (hoặc bảng biến thiên) của hàm số $y=a{{x}^{2}}+bx+c$ $(a\ne 0)$ ta thấy nó đạt giá trị lớn nhất, nhỏ nhất trên $\left[ \alpha ;\beta \right]$ tại điểm $x=\alpha $ hoặc $x=\beta $ hoặc $x=-\frac{b}{2a}$, cụ thể như sau:
Trường hợp 1: $a > 0.$
+ Nếu $ – \frac{b}{{2a}} \in \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = f( – \frac{b}{{2a}})$, $\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \max \left\{ {f(\alpha ),f(\beta )} \right\}.$
+ Nếu $ – \frac{b}{{2a}} \notin \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \min \left\{ {f(\alpha ),f(\beta )} \right\}$, $\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \max \left\{ {f(\alpha ),f(\beta )} \right\}.$
Trường hợp 2: $a < 0.$
+ Nếu $ – \frac{b}{{2a}} \in \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = f( – \frac{b}{{2a}})$, $\mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \min \left\{ {f(\alpha ),f(\beta )} \right\}.$
+ Nếu $ – \frac{b}{{2a}} \notin \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \min \left\{ {f(\alpha ),f(\beta )} \right\}$, $\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \max \left\{ {f(\alpha ),f(\beta )} \right\}.$
Ví dụ 6. Cho phương trình ${x^2} + 2\left( {m + 3} \right)x + {m^2} – 3 = 0$, $m$ là tham số. Tìm $m$ để phương trình có hai nghiệm ${{x}_{1}},{{x}_{2}}$ và $P=5({{x}_{1}}+{{x}_{2}})-2{{x}_{1}}{{x}_{2}}$ đạt giá trị lớn nhất.
Ta có: $\Delta’ = {\left( {m + 3} \right)^2} – \left( {{m^2} – 3} \right)$ $ = 6m + 12.$
Phương trình có nghiệm $ \Leftrightarrow \Delta’ \ge 0$ $ \Leftrightarrow 6m + 12 \ge 0$ $ \Leftrightarrow m \ge – 2.$
Theo định lý Viét ta có: $\left\{ {\begin{array}{*{20}{c}}
{{x_1} + {x_2} = – 2\left( {m + 3} \right)}\\
{{x_1}{x_2} = {m^2} – 3}
\end{array}} \right.$
$P = – 10\left( {m + 3} \right) – 2\left( {{m^2} – 3} \right)$ $ = – 2{m^2} – 10m – 24.$
Xét hàm số $y = – 2{x^2} – 10x – 24$ với $x \in \left[ { – 2; + \infty } \right).$
Bảng biến thiên:
Suy ra $\mathop {max}\limits_{\left[ { – 2; + \infty } \right)} y = – 12$ khi và chỉ khi $x = – 2.$
Vậy $m = – 2$ là giá trị cần tìm.
Ví dụ 7. Tìm giá trị nhỏ nhất của hàm số $y = \sqrt[3]{{{x^4} + 2{x^2} + 1}}$ $ – 3\sqrt[3]{{{x^2} + 1}} + 1.$
Đặt $t = \sqrt[3]{{{x^2} + 1}}$, $t \ge 1$ $ \Rightarrow {t^2} = \sqrt[3]{{{x^4} + 2{x^2} + 1}}.$
Khi đó hàm số trở thành $y = {t^2} – 3t + 1$ với $t \ge 1.$
Bảng biến thiên:
Suy ra giá trị nhỏ nhất của hàm số $y = \sqrt[3]{{{x^4} + 2{x^2} + 1}}$ $ – 3\sqrt[3]{{{x^2} + 1}} + 1$ là $ – \frac{5}{4}$ khi và chỉ khi $t = \frac{3}{2}$ hay $\sqrt[3]{{{x^2} + 1}} = \frac{3}{2}$ $ \Leftrightarrow x = \pm \sqrt {\frac{{19}}{8}} .$
Ví dụ 8. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y = {x^4} – 4{x^2} – 1$ trên $\left[ { – 1;2} \right].$
Đặt $t = {x^2}.$
Với $x \in \left[ { – 1;2} \right]$, ta có: $t \in \left[ {0;4} \right].$
Hàm số trở thành $f\left( t \right) = {t^2} – 4t – 1$ với $t \in \left[ {0;4} \right].$
Bảng biến thiên:
Suy ra:
$\mathop {max}\limits_{\left[ { – 1;2} \right]} y = \mathop {max}\limits_{\left[ {0;4} \right]} f\left( t \right) = – 1$ khi $\left[ {\begin{array}{*{20}{c}}
{t = 0}\\
{t = 4}
\end{array}} \right.$ hay $\left[ {\begin{array}{*{20}{c}}
{x = 0}\\
{x = \pm 2}
\end{array}} \right.$
$\mathop {\min y}\limits_{\left[ { – 1;2} \right]} = \mathop {\min }\limits_{\left[ { – 1;2} \right]} f\left( t \right) = – 1$ khi $t = 2$ hay $x = \pm \sqrt 2 .$
Ví dụ 9. Cho các số thực $a,b$ thoả mãn $ab\ne 0$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}} – \frac{a}{b} – \frac{b}{a} + 1.$
Đặt $t = \frac{a}{b} + \frac{b}{a}$, ta có $\left| t \right| = \left| {\frac{a}{b} + \frac{b}{a}} \right|$ $ = \left| {\frac{a}{b}} \right| + \left| {\frac{b}{a}} \right|$ $ \ge 2\sqrt {\left| {\frac{a}{b}} \right|.\left| {\frac{b}{a}} \right|} = 2.$
${t^2} = \frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}} + 2$ $ \Rightarrow \frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}} = {t^2} – 2.$
Ta có $P = {t^2} – 2 – t + 1$ $ = {t^2} – t – 1.$
Xét hàm số $f(t) = {t^2} – t – 1$ với $t \in \left( { – \infty ; – 2} \right] \cup \left[ {2; + \infty } \right).$
Bảng biến thiên:
Từ bảng biến thiên ta có:
$\min P = \mathop {\min }\limits_{\left( { – \infty ; – 2} \right] \cup \left[ {2; + \infty } \right)} f(t) = 1$ khi $t = 2$ hay $2 = \frac{a}{b} + \frac{b}{a}$ $ \Leftrightarrow a = b.$
Ví dụ 10. Cho các số $x,y$ thoả mãn: ${x^2} + {y^2} = 1 + xy.$ Chứng minh rằng $\frac{1}{9} \le {x^4} + {y^4} – {x^2}{y^2} \le \frac{3}{2}.$
Đặt $P = {x^4} + {y^4} – {x^2}{y^2}.$
Ta có $P = {({x^2} + {y^2})^2} – 3{x^2}{y^2}$ $ = {\left( {1 + xy} \right)^2} – 3{x^2}{y^2}$ $ = – 2{x^2}{y^2} + 2xy + 1.$
Đặt $t = xy$, khi đó $P = – 2{t^2} + 2t + 1.$
Vì $\left\{ {\begin{array}{*{20}{c}}
{{x^2} + {y^2} \ge 2xy}\\
{{x^2} + {y^2} \ge – 2xy}
\end{array}} \right.$ nên $\left\{ {\begin{array}{*{20}{c}}
{1 + xy \ge 2xy}\\
{1 + xy \ge – 2xy}
\end{array}} \right.$ $ \Leftrightarrow – \frac{1}{3} \le xy \le 1.$
Do đó $ – \frac{1}{3} \le t \le 1.$
Xét hàm số $f(t) = – 2{t^2} + 2t + 1$ trên $\left[ { – \frac{1}{3};\,1} \right].$
Ta có $ – \frac{b}{{2a}} = \frac{1}{2}$, ta có bảng biến thiên:
Từ bảng biến thiên ta có $\mathop {\min }\limits_{\left[ { – \frac{1}{3};\,12} \right]} f(t) = \frac{1}{9}$ $ \le P \le \mathop {\max }\limits_{\left[ { – \frac{1}{3};1} \right]} f(t) = \frac{3}{2}.$
Trường hợp 1: $a > 0.$
+ Nếu $ – \frac{b}{{2a}} \in \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = f( – \frac{b}{{2a}})$, $\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \max \left\{ {f(\alpha ),f(\beta )} \right\}.$
+ Nếu $ – \frac{b}{{2a}} \notin \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \min \left\{ {f(\alpha ),f(\beta )} \right\}$, $\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \max \left\{ {f(\alpha ),f(\beta )} \right\}.$
Trường hợp 2: $a < 0.$
+ Nếu $ – \frac{b}{{2a}} \in \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = f( – \frac{b}{{2a}})$, $\mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \min \left\{ {f(\alpha ),f(\beta )} \right\}.$
+ Nếu $ – \frac{b}{{2a}} \notin \left[ {\alpha ;\beta } \right]$ $ \Rightarrow \mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \min \left\{ {f(\alpha ),f(\beta )} \right\}$, $\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f(x) = \max \left\{ {f(\alpha ),f(\beta )} \right\}.$
Ví dụ 6. Cho phương trình ${x^2} + 2\left( {m + 3} \right)x + {m^2} – 3 = 0$, $m$ là tham số. Tìm $m$ để phương trình có hai nghiệm ${{x}_{1}},{{x}_{2}}$ và $P=5({{x}_{1}}+{{x}_{2}})-2{{x}_{1}}{{x}_{2}}$ đạt giá trị lớn nhất.
Ta có: $\Delta’ = {\left( {m + 3} \right)^2} – \left( {{m^2} – 3} \right)$ $ = 6m + 12.$
Phương trình có nghiệm $ \Leftrightarrow \Delta’ \ge 0$ $ \Leftrightarrow 6m + 12 \ge 0$ $ \Leftrightarrow m \ge – 2.$
Theo định lý Viét ta có: $\left\{ {\begin{array}{*{20}{c}}
{{x_1} + {x_2} = – 2\left( {m + 3} \right)}\\
{{x_1}{x_2} = {m^2} – 3}
\end{array}} \right.$
$P = – 10\left( {m + 3} \right) – 2\left( {{m^2} – 3} \right)$ $ = – 2{m^2} – 10m – 24.$
Xét hàm số $y = – 2{x^2} – 10x – 24$ với $x \in \left[ { – 2; + \infty } \right).$
Bảng biến thiên:
Suy ra $\mathop {max}\limits_{\left[ { – 2; + \infty } \right)} y = – 12$ khi và chỉ khi $x = – 2.$
Vậy $m = – 2$ là giá trị cần tìm.
Ví dụ 7. Tìm giá trị nhỏ nhất của hàm số $y = \sqrt[3]{{{x^4} + 2{x^2} + 1}}$ $ – 3\sqrt[3]{{{x^2} + 1}} + 1.$
Đặt $t = \sqrt[3]{{{x^2} + 1}}$, $t \ge 1$ $ \Rightarrow {t^2} = \sqrt[3]{{{x^4} + 2{x^2} + 1}}.$
Khi đó hàm số trở thành $y = {t^2} – 3t + 1$ với $t \ge 1.$
Bảng biến thiên:
Suy ra giá trị nhỏ nhất của hàm số $y = \sqrt[3]{{{x^4} + 2{x^2} + 1}}$ $ – 3\sqrt[3]{{{x^2} + 1}} + 1$ là $ – \frac{5}{4}$ khi và chỉ khi $t = \frac{3}{2}$ hay $\sqrt[3]{{{x^2} + 1}} = \frac{3}{2}$ $ \Leftrightarrow x = \pm \sqrt {\frac{{19}}{8}} .$
Ví dụ 8. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y = {x^4} – 4{x^2} – 1$ trên $\left[ { – 1;2} \right].$
Đặt $t = {x^2}.$
Với $x \in \left[ { – 1;2} \right]$, ta có: $t \in \left[ {0;4} \right].$
Hàm số trở thành $f\left( t \right) = {t^2} – 4t – 1$ với $t \in \left[ {0;4} \right].$
Bảng biến thiên:
Suy ra:
$\mathop {max}\limits_{\left[ { – 1;2} \right]} y = \mathop {max}\limits_{\left[ {0;4} \right]} f\left( t \right) = – 1$ khi $\left[ {\begin{array}{*{20}{c}}
{t = 0}\\
{t = 4}
\end{array}} \right.$ hay $\left[ {\begin{array}{*{20}{c}}
{x = 0}\\
{x = \pm 2}
\end{array}} \right.$
$\mathop {\min y}\limits_{\left[ { – 1;2} \right]} = \mathop {\min }\limits_{\left[ { – 1;2} \right]} f\left( t \right) = – 1$ khi $t = 2$ hay $x = \pm \sqrt 2 .$
Ví dụ 9. Cho các số thực $a,b$ thoả mãn $ab\ne 0$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}} – \frac{a}{b} – \frac{b}{a} + 1.$
Đặt $t = \frac{a}{b} + \frac{b}{a}$, ta có $\left| t \right| = \left| {\frac{a}{b} + \frac{b}{a}} \right|$ $ = \left| {\frac{a}{b}} \right| + \left| {\frac{b}{a}} \right|$ $ \ge 2\sqrt {\left| {\frac{a}{b}} \right|.\left| {\frac{b}{a}} \right|} = 2.$
${t^2} = \frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}} + 2$ $ \Rightarrow \frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}} = {t^2} – 2.$
Ta có $P = {t^2} – 2 – t + 1$ $ = {t^2} – t – 1.$
Xét hàm số $f(t) = {t^2} – t – 1$ với $t \in \left( { – \infty ; – 2} \right] \cup \left[ {2; + \infty } \right).$
Bảng biến thiên:
Từ bảng biến thiên ta có:
$\min P = \mathop {\min }\limits_{\left( { – \infty ; – 2} \right] \cup \left[ {2; + \infty } \right)} f(t) = 1$ khi $t = 2$ hay $2 = \frac{a}{b} + \frac{b}{a}$ $ \Leftrightarrow a = b.$
Ví dụ 10. Cho các số $x,y$ thoả mãn: ${x^2} + {y^2} = 1 + xy.$ Chứng minh rằng $\frac{1}{9} \le {x^4} + {y^4} – {x^2}{y^2} \le \frac{3}{2}.$
Đặt $P = {x^4} + {y^4} – {x^2}{y^2}.$
Ta có $P = {({x^2} + {y^2})^2} – 3{x^2}{y^2}$ $ = {\left( {1 + xy} \right)^2} – 3{x^2}{y^2}$ $ = – 2{x^2}{y^2} + 2xy + 1.$
Đặt $t = xy$, khi đó $P = – 2{t^2} + 2t + 1.$
Vì $\left\{ {\begin{array}{*{20}{c}}
{{x^2} + {y^2} \ge 2xy}\\
{{x^2} + {y^2} \ge – 2xy}
\end{array}} \right.$ nên $\left\{ {\begin{array}{*{20}{c}}
{1 + xy \ge 2xy}\\
{1 + xy \ge – 2xy}
\end{array}} \right.$ $ \Leftrightarrow – \frac{1}{3} \le xy \le 1.$
Do đó $ – \frac{1}{3} \le t \le 1.$
Xét hàm số $f(t) = – 2{t^2} + 2t + 1$ trên $\left[ { – \frac{1}{3};\,1} \right].$
Ta có $ – \frac{b}{{2a}} = \frac{1}{2}$, ta có bảng biến thiên:
Từ bảng biến thiên ta có $\mathop {\min }\limits_{\left[ { – \frac{1}{3};\,12} \right]} f(t) = \frac{1}{9}$ $ \le P \le \mathop {\max }\limits_{\left[ { – \frac{1}{3};1} \right]} f(t) = \frac{3}{2}.$