Dạng toán 3. Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn.

Tăng Giáp

Administrator
Thành viên BQT
Ví dụ 9. Giải và biện luận bất phương trình $\frac{mx-m+1}{x-1}>0.$

Điều kiện xác định: $x\ne 1.$
Bất phương trình tương đương với $\left\{ \begin{matrix}
x>1 \\
mx-m+1>0 \\
\end{matrix} \right.$ $(3)$ hoặc $\left\{ \begin{matrix}
x<1 \\
mx-m+1<0 \\
\end{matrix} \right.$ $(4).$
+ Trường hợp 1: $m>0$ ta có $(3)$ $\Leftrightarrow \left\{ \begin{matrix}
x>1 \\
x>\frac{m-1}{m} \\
\end{matrix} \right.$ và $(4)$ $\Leftrightarrow \left\{ \begin{matrix}
x<1 \\
x<\frac{m-1}{m} \\
\end{matrix} \right.$
Vì $\frac{m-1}{m}<1$ với mọi $m>0$, do đó $\left( 3 \right)$ $\Leftrightarrow x>1$ và $\left( 4 \right)$ $\Leftrightarrow x<\frac{m-1}{m}.$
Suy ra nghiệm của bất phương trình là: $x\in \left( -\infty ;\frac{m-1}{m} \right)\cup \left( 1;+\infty \right).$
+ Trường hợp 2: $m=0$, bất phương trình trở thành: $\frac{1}{x-1}>0$ $\Leftrightarrow x-1>0$ $\Leftrightarrow x>1.$
Suy ra nghiệm của bất phương trình là $x\in \left( 1;+\infty \right).$
+ Trường hợp 3: $m<0$ ta có $(3)$ $\Leftrightarrow \left\{ \begin{matrix}
x>1 \\
x<\frac{m-1}{m} \\
\end{matrix} \right.$ và $(4)$ $\Leftrightarrow \left\{ \begin{matrix}
x<1 \\
x>\frac{m-1}{m} \\
\end{matrix} \right.$
Vì $\frac{m-1}{m}>1$ với mọi $m<0$, nên $\left( 3 \right)$ $\Leftrightarrow 1<x<\frac{m-1}{m}$ và $\left( 4 \right)$ vô nghiệm.
Suy ra nghiệm của bất phương trình là $x\in \left( 1;\frac{m-1}{m} \right).$
Kết luận:
$m>0$ tập nghiệm của bất phương trình là $S=\left( -\infty ;\frac{m-1}{m} \right)\cup \left( 1;+\infty \right).$
$m=0$ tập nghiệm của bất phương trình là $S=\left( 1;+\infty \right).$
$m<0$ tập nghiệm của bất phương trình là $S=\left( 1;\frac{m-1}{m} \right).$

Ví dụ 10. Cho bất phương trình $\sqrt{\left( {{m}^{2}}-4 \right)x-m+3}>2.$
a) Giải bất phương trình khi $m=1.$
b) Tìm $m$ để bất phương trình nghiệm đúng với mọi $x.$

a) Khi $m=1$ bất phương trình trở thành $\sqrt{-3x+2}>2$ $\Leftrightarrow \left\{ \begin{matrix}
-3x+2\ge 0 \\
-3x+2\ge 4 \\
\end{matrix} \right.$ $\Leftrightarrow x\le -\frac{2}{3}.$
Vậy tập nghiệm bất phương trình là $\text{S}=(-\infty ;-\frac{2}{3}].$
b) Điều kiện xác định: $\left( {{m}^{2}}-4 \right)x-m+3\ge 0.$
Giả sử bất phương trình nghiệm đúng với mọi $x$ thì khi đó điều kiện $\left( {{m}^{2}}-4 \right)x-m+3\ge 0$ đúng với mọi $x.$
Suy ra ${{m}^{2}}-4=0$ $\Leftrightarrow m=\pm 2.$
Với $m=2$ ta có bất phương trình trở thành $\sqrt{0.x-2+3}>2$ (vô nghiệm).
Với $m=-2$ ta có bất phương trình trở thành $\sqrt{0.x+2+3}>2$ (đúng với mọi $x$).
Vậy $m=-2$ là giá trị cần tìm.

Ví dụ 11. Cho bất phương trình $\sqrt{x-1}(x-2m+2)\ge 0.$
a) Giải bất phương trình khi $m=2.$
b) Tìm $m$ để mọi $x\in \left[ 2;3 \right]$ đều là nghiệm của bất phương trình đã cho.

a) Khi $m=2$ bất phương trình trở thành $\sqrt{x-1}(x-2)\ge 0.$
Bất phương trình tương đương với $\left[ \begin{matrix}
\sqrt{x-1}=0 \\
\left\{ \begin{align}
& x-1\ge 0 \\
& x-2\ge 0 \\
\end{align} \right. \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
\left\{ \begin{matrix}
x\ge 1 \\
x\ge 2 \\
\end{matrix} \right. \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 2 \\
\end{matrix} \right.$
Vậy tập nghiệm bất phương trình là $\text{S}=\left\{ 1 \right\}\cup [2;+\infty ).$
b) Bất phương trình tương đương với $\left[ \begin{matrix}
\sqrt{x-1}=0 \\
\left\{ \begin{align}
& x-1\ge 0 \\
& x-2m+2\ge 0 \\
\end{align} \right. \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
\left\{ \begin{align}
& x\ge 1 \\
& x\ge 2m-2 \\
\end{align} \right. \\
\end{matrix} \right.$
+ Trường hợp 1: $2m-2>1$ $\Leftrightarrow m>\frac{3}{2}$: Ta có bất phương trình $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 2m-2 \\
\end{matrix} \right.$
Suy ra tập nghiệm bất phương trình là $S=\left\{ 1 \right\}\cup [2m-2;+\infty ).$
Do đó mọi $x\in \left[ 2;3 \right]$ đều là nghiệm của bất phương trình đã cho $\Leftrightarrow \left[ 2;3 \right]\subset S$ $\Leftrightarrow 2m-2\le 2$ $\Leftrightarrow m\le 2.$
Suy ra $\frac{3}{2}<m\le 2$ thỏa mãn yêu cầu bài toán.
+ Trường hợp 2: $2m-2=1$ $\Leftrightarrow m=\frac{3}{2}$: Ta có bất phương trình $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 1 \\
\end{matrix}\Leftrightarrow x\ge 1 \right. .$
Suy ra $m=\frac{3}{2}$ thỏa mãn yêu cầu bài toán.
+ Trường hợp 3: $2m-2<1$ $\Leftrightarrow m<\frac{3}{2}$: Ta có bất phương trình $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 1 \\
\end{matrix}\Leftrightarrow x\ge 1 \right. .$
Suy ra $m<\frac{3}{2}$ thỏa mãn yêu cầu bài toán.
Vậy giá trị cần tìm là $m\le 2.$
 
Back
Top