Dạng toán 1: Tìm nguyên hàm của hàm số mũ và logarit dựa trên dạng nguyên hàm cơ bản.

Tăng Giáp

Administrator
Thành viên BQT
Bằng các phép biến đổi đại số, ta biến đổi biểu thức dưới dấu tích phân về các dạng nguyên hàm cơ bản đã biết.

Ví dụ 1: Tìm nguyên hàm của các hàm số sau:
a) $f(x) = \frac{1}{{{e^x} – {e^{ – x}}}}.$
b) $\frac{{{2^{2x}}{3^x}}}{{{{16}^x} – {9^x}}}.$

a) Ta có: $\int f (x)dx$ $ = \int {\frac{{d\left( {{e^x}} \right)}}{{{e^{2x}} – 1}}} $ $ = \frac{1}{2}\ln \left| {\frac{{{e^x} – 1}}{{{e^x} + 1}}} \right| + C.$
b) Chia tử số và mẫu số của biểu thức dưới dấu tích phân cho ${4^x}$, ta được:
$\int f (x)dx$ $ = \int {\frac{{{{\left( {\frac{4}{3}} \right)}^x}}}{{{{\left( {\frac{4}{3}} \right)}^{2x}} – 1}}} dx$ $ = \frac{1}{{\ln \frac{4}{3}}}\int {\frac{{d\left[ {{{\left( {\frac{4}{3}} \right)}^x}} \right]}}{{{{\left( {\frac{4}{3}} \right)}^{2x}} – 1}}} dx$ $ = \frac{1}{{\ln \frac{4}{3}}}.\frac{1}{2}\ln \left| {\frac{{{{\left( {\frac{4}{3}} \right)}^x} – 1}}{{{{\left( {\frac{4}{3}} \right)}^x} + 1}}} \right| + C$ $ = \frac{1}{{2(\ln 4 – \ln 3)}}\ln \left| {\frac{{{4^x} – {3^x}}}{{{4^x} + {3^x}}}} \right| + C.$

Ví dụ 2: Tìm nguyên hàm của các hàm số sau:
a) $f(x) = \frac{1}{{1 + {8^x}}}.$
b) $f(x) = \frac{{\ln (ex)}}{{3 + x\ln x}}.$

a) Ta có: $\int f (x)dx$ $ = \int {\frac{1}{{1 + {8^x}}}} dx$ $ = \int {\left( {1 – \frac{{{8^x}}}{{1 + {8^x}}}} \right)} dx$ $ = x – \frac{{\ln \left( {1 + {8^x}} \right)}}{{\ln 8}} + C.$
b) Ta có: $\int f (x)dx$ $ = \int {\frac{{1 + \ln x}}{{3 + x\ln x}}} dx$ $ = \int {\frac{{d(x\ln x)}}{{3 + x\ln x}}} $ $ = \int {\frac{{d(3 + x\ln x)}}{{3 + x\ln x}}} $ $ = \ln |3 + x\ln x| + C.$
 
Back
Top