Ví dụ 11: Cho lăng trụ xiên tam giác $ABC.A’B’C’$ có đáy $ABC$ là tam giác đều cạnh $a$, biết cạnh bên là $a\sqrt 3 $ và hợp với đáy $ABC$ một góc $60°$. Tính thể tích lăng trụ.
Gọi $H$ là hình chiếu vuông góc của $C’$ lên $(ABC)$.
Khi đó $\widehat {\left( {CC’,(ABC)} \right)} = \widehat {C’CH} = {60^o}.$
$\Delta CHC’$ vuông tại $H$ $ \Rightarrow C’H = CC’.\sin {60^0} = \frac{{3a}}{2}.$
${S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.$
Vậy $V = {S_{ABC}}.C’H = \frac{{3{a^3}\sqrt 3 }}{8}.$
Ví dụ 12: Cho lăng trụ xiên tam giác $ABC.A’B’C’$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu của $A’$ xuống $(ABC)$ là tâm $O$ đường tròn ngoại tiếp tam giác $ABC$ biết $AA’$ hợp với đáy $(ABC)$ một góc $60°.$
1. Chứng minh rằng $BB’C’C$ là hình chữ nhật.
2. Tính thể tích lăng trụ.
1. Ta có $BB’C’C$ là hình bình hành vì là mặt bên của lăng trụ.
Gọi $H$ là trung điểm của $BC$, vì tam giác $ΔABC$ đều nên $O ∈ AH.$
Ta có: $BC \bot AH$ và $BC \bot A’O$ nên $BC \bot (AAH)’$, do đó $BC \bot A’A.$
Mà $AA’ // BB’$, do đó $BC \bot BB’$, suy ra $BB’C’C$ là hình chữ nhật.
2. $\Delta ABC$ đều nên $AO = \frac{2}{3}AH = \frac{2}{3}\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}.$
$\Delta AOA’$ vuông tại $O$ $ \Rightarrow A’O = AO\tan {60^o} = a.$
Vậy $V = {S_{ABC}}.A’O = \frac{{{a^3}\sqrt 3 }}{4}.$
Ví dụ 13: Cho hình hộp $ABCD.A’B’C’D’$ có đáy là hình chữ nhật với $AB = \sqrt 3$, $AD = \sqrt 7$. Hai mặt bên $(ABB’A’)$ và $(ADD’A’)$ lần lượt tạo với đáy những góc $45°$ và $60°$. Tính thể tích khối hộp nếu biết cạnh bên bằng $1.$
Kẻ $A’H \bot (ABCD)$, $HM \bot AB$, $HN \bot AD$ (các điểm nằm trên các đường thẳng và mặt phẳng như hình vẽ).
Khi đó $A’M \bot AB$ và $A’N \bot AD.$
Suy ra: $ \widehat {A’MH} = {45^o}, \widehat {A’NH} = {60^o}.$
Đặt $A’H = x$.
$ΔA’HN$ vuông tại $H$ nên $A’N = x : sin 60° = \frac{{2x}}{{\sqrt 3 }}.$
$ΔA’AN$ vuông tại $N$ nên $AN = \sqrt {AA{‘^2} – A'{N^2}} = \sqrt {\frac{{3 – 4{x^2}}}{3}} .$
$ΔA’MH$ vuông tại $H$ nên $HM = x.cot{45^0} = x.$
Vì tứ giác $AMHN$ là hình chữ nhật nên $AN = MH$, suy ra: $\sqrt {\frac{{3 – 4{x^2}}}{3}} = x$ $ \Leftrightarrow x = \sqrt {\frac{3}{7}} .$
Vậy ${V_{ABCD.A’B’C’D’}} = AB.AD.A’H = 3.$
Gọi $H$ là hình chiếu vuông góc của $C’$ lên $(ABC)$.
Khi đó $\widehat {\left( {CC’,(ABC)} \right)} = \widehat {C’CH} = {60^o}.$
$\Delta CHC’$ vuông tại $H$ $ \Rightarrow C’H = CC’.\sin {60^0} = \frac{{3a}}{2}.$
${S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.$
Vậy $V = {S_{ABC}}.C’H = \frac{{3{a^3}\sqrt 3 }}{8}.$
Ví dụ 12: Cho lăng trụ xiên tam giác $ABC.A’B’C’$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu của $A’$ xuống $(ABC)$ là tâm $O$ đường tròn ngoại tiếp tam giác $ABC$ biết $AA’$ hợp với đáy $(ABC)$ một góc $60°.$
1. Chứng minh rằng $BB’C’C$ là hình chữ nhật.
2. Tính thể tích lăng trụ.
1. Ta có $BB’C’C$ là hình bình hành vì là mặt bên của lăng trụ.
Gọi $H$ là trung điểm của $BC$, vì tam giác $ΔABC$ đều nên $O ∈ AH.$
Ta có: $BC \bot AH$ và $BC \bot A’O$ nên $BC \bot (AAH)’$, do đó $BC \bot A’A.$
Mà $AA’ // BB’$, do đó $BC \bot BB’$, suy ra $BB’C’C$ là hình chữ nhật.
2. $\Delta ABC$ đều nên $AO = \frac{2}{3}AH = \frac{2}{3}\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}.$
$\Delta AOA’$ vuông tại $O$ $ \Rightarrow A’O = AO\tan {60^o} = a.$
Vậy $V = {S_{ABC}}.A’O = \frac{{{a^3}\sqrt 3 }}{4}.$
Ví dụ 13: Cho hình hộp $ABCD.A’B’C’D’$ có đáy là hình chữ nhật với $AB = \sqrt 3$, $AD = \sqrt 7$. Hai mặt bên $(ABB’A’)$ và $(ADD’A’)$ lần lượt tạo với đáy những góc $45°$ và $60°$. Tính thể tích khối hộp nếu biết cạnh bên bằng $1.$
Kẻ $A’H \bot (ABCD)$, $HM \bot AB$, $HN \bot AD$ (các điểm nằm trên các đường thẳng và mặt phẳng như hình vẽ).
Khi đó $A’M \bot AB$ và $A’N \bot AD.$
Suy ra: $ \widehat {A’MH} = {45^o}, \widehat {A’NH} = {60^o}.$
Đặt $A’H = x$.
$ΔA’HN$ vuông tại $H$ nên $A’N = x : sin 60° = \frac{{2x}}{{\sqrt 3 }}.$
$ΔA’AN$ vuông tại $N$ nên $AN = \sqrt {AA{‘^2} – A'{N^2}} = \sqrt {\frac{{3 – 4{x^2}}}{3}} .$
$ΔA’MH$ vuông tại $H$ nên $HM = x.cot{45^0} = x.$
Vì tứ giác $AMHN$ là hình chữ nhật nên $AN = MH$, suy ra: $\sqrt {\frac{{3 – 4{x^2}}}{3}} = x$ $ \Leftrightarrow x = \sqrt {\frac{3}{7}} .$
Vậy ${V_{ABCD.A’B’C’D’}} = AB.AD.A’H = 3.$