Dạng 3: Lăng trụ đứng có góc giữa 2 mặt phẳng

Tăng Giáp

Administrator
Thành viên BQT
Ví dụ 8: Cho lăng trụ đứng tam giác $ABC.A’B’C’$ có đáy $ABC$ là tam giác vuông cân tại $B$ với $BA = BC = a$, biết $(A’BC)$ hợp với đáy $(ABC)$ một góc $60°$.Tính thể tích lăng trụ.

Lăng trụ đứng có góc giữa 2 mặt phẳng.png


Ta có: $AA’ \bot (ABC) \Rightarrow BC \bot AA’.$
Mà $BC \bot AB$ nên $BC \bot (ABA’).$
Suy ra $BC \bot A’B.$
Do đó $\widehat {\left( {(A’BC),(ABC)} \right)} = \widehat {ABA’} = {60^o}.$
$\Delta ABA’$ vuông tại $A$ nên $AA’ = AB.\tan {60^0} = a\sqrt 3 .$
${S_{ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}.$
Vậy $V = {S_{ABC}}.AA’ = \frac{{{a^3}\sqrt 3 }}{2}.$

Ví dụ 9: Đáy của lăng trụ đứng tam giác $ABC.A’B’C’$ là tam giác đều. Mặt phẳng $(A’BC)$ tạo với đáy một góc $30°$ và diện tích tam giác $A’BC$ bằng $8$. Tính thể tích khối lăng trụ.

Lăng trụ đứng có góc giữa 2 mặt phẳng.png


Gọi $I$ là trung điểm của $BC.$
$\Delta ABC$ đều $ \Rightarrow AI \bot BC$, mà $AA’ \bot (ABC)$ nên $A’I \bot BC$ (định lý $3$ đường vuông góc).
Do đó: $\widehat {\left( {\left( {A’BC} \right);\left( {ABC} \right)} \right)} = \widehat {A’IA} = {30^o}.$
Giả sử $BI = x$, suy ra $AI = x \sqrt 3$.
Ta có: $ΔA’AI$ vuông tại $A$ nên $A’I = AI.\cos{30°} = 2x$ và $A’A = AI.\tan {30°} = x.$
$S_{A’BC} = BI.A’I = x.2x = 8$, suy ra $x = 2.$
Vậy $V_{ABC.A’B’C’} = BI.AI.A’A = 8√3 .$

Ví dụ 10: Cho hình hộp chữ nhật $ABCD.A’B’C’D’$ có $AA’ = 2a$; mặt phẳng $(A’BC)$ hợp với đáy $(ABCD)$ một góc $60°$và $A’C$ hợp với đáy $(ABCD)$ một góc $30°$.Tính thể tích khối hộp chữ nhật.



Ta có $AA’ \bot (ABCD)$, suy ra $AC$ là hình chiếu của $A’C$ trên $(ABCD).$
Nên $\widehat {\left( {A’C,\left( {ABCD} \right)} \right)} = \widehat {A’CA} = {30^o}.$
$BC \bot (ABB’A’)$ nên $\widehat {\left( {A’BC} \right),\left( {ABCD} \right)} = \widehat {A’BA} = {60^o}.$
$\Delta A’AC$ vuông tại $A$ nên $AC = AA’.cot{30^o} = 2a\sqrt 3 .$
$\Delta A’AB$ vuông tại $A$ nên $AB = AA’.cot{60^o} = \frac{{2a\sqrt 3 }}{3}.$
$\Delta ABC$ vuông tại $B$ nên $ \Rightarrow BC = \sqrt {A{C^2} – A{B^2}} = \frac{{4a\sqrt 6 }}{3}.$
Vậy: $V = AB.BC.AA’ = \frac{{16{a^3}\sqrt 2 }}{3}.$
 
Back
Top