Dạng 12: Tìm nguyên hàm của hàm số...

Tăng Giáp

Administrator
Thành viên BQT
Dạng 12: Tìm nguyên hàm của hàm số: $f(x) = \frac{{dx}}{{(\lambda x + \mu )\sqrt {a{x^2} + bx + c} }}.$
Ta thực hiện theo các bước sau:
Bước 1: Đặt $t = \frac{1}{{\lambda x + \mu }}.$
Bước 2: Bài toán được chuyển về $I = \int {\frac{{dt}}{{\sqrt {\alpha {t^2} + \beta t + \gamma } }}} .$
Chú ý: Phương pháp trên có thể được áp dụng cho dạng tổng quát hơn là: $I = \int {\frac{{(Ax + B)dx}}{{{{(\lambda x + \mu )}^n}\sqrt {a{x^2} + bx + c} }}} .$

Ví dụ: Tìm nguyên hàm của hàm số: $f(x) = \frac{1}{{(x + 1)\sqrt {{x^2} + 2x + 2} }}.$

Đặt $t = \frac{1}{{x + 1}}$ thì $x = \frac{1}{t} – 1$ suy ra: $dx = – \frac{1}{{{t^2}}}dt$, $\frac{{dx}}{{(x + 1)\sqrt {{x^2} + 2x + 2} }}$ $ = \frac{{t\left( { – \frac{1}{{{t^2}}}} \right)dt}}{{\sqrt {\frac{1}{{{t^2}}} + 1} }}$ $ = – \frac{{dt}}{{t\sqrt {\frac{1}{{{t^2}}} + 1} }}$ $ = \left\{ {\begin{array}{*{20}{l}}
{ – \frac{{dt}}{{\sqrt {1 + {t^2}} }}\:{\rm{khi}}\:t > 0}\\
{\frac{{dt}}{{\sqrt {1 + {t^2}} }}\:{\rm{khi}}\:t < 0}
\end{array}} \right.$
Khi đó ta xét hai trường hợp:
Trường hợp 1: Với $t>0$, ta được: $\int f (x)dx$ $ = \ln \left| {\frac{{1 – \sqrt {{x^2} + 2x + 2} }}{{x + 1}}} \right| + C.$
Trường hợp 2: Với $t < 0$. ta được: $\int f (x)dx$ $ = \ln \left| {\frac{{1 – \sqrt {{x^2} + 2x + 2} }}{{x + 1}}} \right| + C.$
Tóm lại với $t \ne 0 \Leftrightarrow x \ne – 1$ ta luôn có: $\int f (x)dx$ $ = \ln \left| {\frac{{1 – \sqrt {{x^2} + 2x + 2} }}{{x + 1}}} \right| + C.$
 
Back
Top