KIẾN THỨC CẦN NẮM VỮNG
1. Giải và biện luận bất phương trình dạng $ax+b<0$.
Giải và biện luận bất phương trình dạng $ax+b<0:$
• Nếu $a=0$ thì bất phương trình có dạng $0x+b<0.$
+ Với $b<0$ thì tập nghiệm bất phương trình là $S = \mathbb{R}.$
+ Với $b\ge 0$ thì tập nghiệm bất phương trình là $S = \emptyset .$
• Nếu $a>0$ thì $ax+b<0$ $\Leftrightarrow x<-\frac{b}{a}$ suy ra tập nghiệm là $S=\left( -\infty ;-\frac{b}{a} \right).$
• Nếu $a<0$ thì $ax+b<0$ $\Leftrightarrow x>-\frac{b}{a}$ suy ra tập nghiệm là $S=\left( -\frac{b}{a};+\infty \right).$
Các bất phương trình dạng $ax+b>0$, $ax+b\le 0$, $ax+b\ge 0$ được giải tương tự.
2. Hệ bất phương trình bậc nhất một ẩn.
Để giải hệ bất phương trình bậc nhất một ẩn, ta giải từng bất phương trình của hệ bất phương trình, khi đó tập nghiệm của hệ bất phương trình là giao của các tập nghiệm từng bất phương trình.
1. Giải và biện luận bất phương trình dạng $ax+b<0$.
Giải và biện luận bất phương trình dạng $ax+b<0:$
• Nếu $a=0$ thì bất phương trình có dạng $0x+b<0.$
+ Với $b<0$ thì tập nghiệm bất phương trình là $S = \mathbb{R}.$
+ Với $b\ge 0$ thì tập nghiệm bất phương trình là $S = \emptyset .$
• Nếu $a>0$ thì $ax+b<0$ $\Leftrightarrow x<-\frac{b}{a}$ suy ra tập nghiệm là $S=\left( -\infty ;-\frac{b}{a} \right).$
• Nếu $a<0$ thì $ax+b<0$ $\Leftrightarrow x>-\frac{b}{a}$ suy ra tập nghiệm là $S=\left( -\frac{b}{a};+\infty \right).$
Các bất phương trình dạng $ax+b>0$, $ax+b\le 0$, $ax+b\ge 0$ được giải tương tự.
2. Hệ bất phương trình bậc nhất một ẩn.
Để giải hệ bất phương trình bậc nhất một ẩn, ta giải từng bất phương trình của hệ bất phương trình, khi đó tập nghiệm của hệ bất phương trình là giao của các tập nghiệm từng bất phương trình.