Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Tăng Giáp

Administrator
Thành viên BQT
LÝ THUYẾT CẦN NẮM VỮNG
1. Bất phương trình bậc nhất hai ẩn

a) Bất phương trình bậc nhất hai ẩn và miền nghiệm.
• Bất phương trình bậc nhất hai ẩn $x$, $y$ là bất phương trình có một trong các dạng: $ax+by+c<0$, $ax+by+c>0$, $ax+by+c\le 0$, $ax+by+c\ge 0$ trong đó $a$, $b$, $c$ là những số thực đã cho, $a$ và $b$ không đồng thời bằng $0$; $x$ và $y$ là các ẩn số.
• Mỗi cặp số $\left( {{x}_{0}};{{y}_{0}} \right)$ sao cho $a{{x}_{0}}+b{{y}_{0}}+c<0$ gọi là một nghiệm của bất phương trình $ax+by+c<0$, nghiệm của các bất phương trình dạng $ax+by>c$, $ax+by\le c$, $ax+by\ge c$ cũng được định nghĩa tương tự.
• Trong mặt phẳng tọa độ thì mỗi nghiệm của bất phương trình bậc nhất hai ẩn được biểu diễn bởi một điểm và tập nghiệm của nó được biểu diễn bởi một tập hợp điểm, ta gọi tập hợp điểm ấy là miền nghiệm của bất phương trình.
b) Cách xác định miền nghiệm của bất phương trình bậc nhất hai ẩn.
• Trong mặt phẳng tọa độ, đường thẳng $\left( d \right):ax+by+c=0$ chia mặt phẳng thành hai nửa mặt phẳng, một trong hai nửa mặt phẳng ấy (không kể bờ $(d)$) gồm các điểm có tọa độ thỏa mãn bất phương trình $ax+by+c>0$, nửa mặt phẳng còn lại (không kể bờ $(d)$) gồm các điểm có tọa độ thỏa mãn bất phương trình $ax+by+c<0.$
• Để xác định miền nghiệm của bất phương trình $ax+by+c<0$, ta có quy tắc thực hành biểu diễn hình học tập nghiệm (hay biểu diễn miền nghiệm) như sau:
Bước 1. Vẽ đường thẳng $(d)$: $ax+by+c=0.$
Bước 2. Xét một điểm $M\left( {{x}_{0}};{{y}_{0}} \right)$ không nằm trên $(d).$
+ Nếu $a{{x}_{0}}+b{{y}_{0}}+c<0$ thì nửa mặt phẳng (không kể bờ $(d)$) chứa điểm $M$ là miền nghiệm của bất phương trình $ax+by+c<0.$
+ Nếu $a{{x}_{0}}+b{{y}_{0}}+c>0$ thì nửa mặt phẳng (không kể bờ $(d)$) không chứa điểm $M$ là miền nghiệm của bất phương trình $ax+by+c<0.$
Chú ý: Đối với các bất phương trình dạng $ax+by+c\le 0$ hoặc $ax+by+c\ge 0$ thì miền nghiệm là nửa mặt phẳng kể cả bờ.


2. Hệ bất phương trình bậc nhất hai ẩn
• Trong mặt phẳng tọa độ, ta gọi tập hợp các điểm có tọa độ thỏa mãn mọi bất phương trình trong hệ là miền nghiệm của hệ. Vậy miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ.
• Để xác định miền nghiệm của hệ, ta dùng phương pháp biểu diễn hình học như sau:
+ Với mỗi bất phương trình trong hệ, ta xác định miền nghiệm của nó và gạch bỏ (tô màu) miền còn lại.
+ Sau khi làm như trên lần lượt đối với tất cả các bất phương trình trong hệ trên cùng một mặt phẳng tọa độ, miền còn lại không bị gạch (tô màu) chính là miền nghiệm của hệ bất phương trình đã cho.
 
Back
Top