Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm \(A\left( {2; - 2;5} \right)\) và tiếp xúc với các mặt phẳng \(\left( \alpha \right):x = 1,\left( \beta \right):y = - 1,\left( \gamma \right):z = 1\). Tim bán kính R của mặt cầu (S).
A. \(R=\sqrt{33}\)
B. R=1...
Trong không gian Oxyz, cho điểm \(M\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 8\). Đường thẳng d thay đổi, đi qua điểm M, cắt mặt cầu (S) tại hai điểm A, B phân biệt. Tính diện tích lớn nhất S của tam giác OAB...
Để trang trí tòa nhà người ta vẽ lên tường một hình như sau: trên mỗi cạnh hình lục giác đều có cạnh là 2dm là một cánh hoa hình parabol mà đỉnh parabol (P) cách các cạnh lục giác là 3dm và nằm phía ngoài lục giác; 2 đầu mút của cạnh cũng là 2 điểm giới hạn của đường (P) đó. Hãy tính diện tích...
Biết rằng F(x) là một nguyên hàm của hàm số\(f\left( x \right) = \sin \left( {1 - 2x} \right)\) trên đoạn \(F\left( {\frac{1}{2}} \right) = 1\). Mệnh đề nào sau đây là đúng?
A. \(F\left( x \right) = - \frac{1}{2}\cos \left( {1 - 2x} \right) + \frac{3}{2}\)
B. \(F\left( x \right) =...
Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên hợp với đáy một góc bằng \(60^\circ \). Kí hiệu \({V_1},{V_2}\) lần lượt là thể tích khối cầu ngoại tiếp, thể tích khối nón ngoại tiếp hình chóp đã cho. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
A...
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên khoảng \(\left( { - \infty ; + \infty } \right)\), có bảng biến thiên như hình vẽ sau:
Mệnh đề nào sao đây sai.
A. Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.
B. Hàm số \(y = f\left( x \right)\) có một điểm cực...
Cho biểu thức \(P = \sqrt {{x^4}\sqrt[3]{x}} \) với x là số dương khác 1. Khẳng định nào sau đây sai?
A. \(P = x\sqrt {{x^2}\sqrt[3]{x}} \)
B. \(P = {x^2}.\sqrt[3]{x}\)
C. \(P = {x^{\frac{{13}}{6}}}\)
D. \(P = \sqrt[6]{{{x^{13}}}}\)
Cho em hỏi câu này!
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt đáy. Gọi E là trung điểm của cạnh CD. Biết thể tích khối chóp S.ABCD bằng \(\frac{{{a^3}}}{3}\). Tính khoảng cách h từ A đến mặt phẳng (SBE) theo a.
A. \(h = \frac{{a\sqrt 3 }}{3}\)
B...
Cho hàm số \(y = \frac{{{x^2} + 3}}{{x + 1}}\). Mệnh đề nào dưới đây đúng?
A. Cực tiểu của hàm số bằng -3.
B. Cực tiểu của hàm số bằng 1.
C. Cực tiểu của hàm số bằng -6.
D. Cực tiểu của hàm số bằng 2.